B 2000
s
-
N
Bl
B N
Bl N
i
E——
A

A

N2
N

Buffer Overruns Explained

Shachar Shemesh
Security Consultant
http://www.shemesh.biz/

A
m

What are They?

#* Any time an attacker can write more
data than the buffer can hold.
* Two major types:
Stack overrun
Heap overrun

Stack Overruns

[he oldest trick in the book.

#* Exploitation is almost a game of trivially
applying a well known technique.
______ * The single most exploited vulnerability.

oy The first worm, called the “Morris Worm?,
used a stack overrun in “Sendmail” — 1988.

Heap Overruns

Considered dangerous for ages.

One would have to “get lucky” with a
convenient pointer.

+ *Only mid 2002 — cookie-cut exploitation
@@ method.
#* Related cousin — double free errors.

Stack Overruns — How it
Works

" Afew things to understand:
" "he stack usually grows downwards.
'he stack frame in “C" — arguments,

return address, base pointer, automatic
vars.

Non of this practically matters —
exploitation is usually possible even if
the above is wrong.

"4 Stack Overrun — Arbitrary
. # Code Execution HOWTO

%i & The Stack
% pointer to egg
géf : pointer and return address
}F;
: 3 Buffer fills up

v Data here is called “egg”

“buffer” pointer
“gets” return address
A frame pointer

main ()

{

char buffer[250];

gets (buffer);
printf (buffer);

printf (“\n”) ;

Analysis

\Vhen “main” tries to return, the
execution will flow into the buffer.

'he egg has to be relocateable code.

._ 'he egg has to avoid certain characters.
o In “gets” case — newline.

Avoiding any single character is no
problem.

There is work (nearly complete) on
printable only egg for i386.

v+ Upward Growing Stack

» The Stack

ﬁ % :
fﬁ‘
pointer to egg char buffer[250];

PVIIILVI VAT 1T WM UMMM VWYY

gets (buffer) ;

Buffer fills up printf (buffer);
printf (“\n”) ;

frame pointer

“main” return address

Heap Overruns — Until 2002

Analyze the heap — search for
convenient pointers.

#* Exploit code highly dependant on exact
program state.

. #*Even so — extremely dangerous to
assume any given buffer overrun is
safe.

b ke
% i%&' ;

s
Heap Overruns — 2002 Edition

"~ #The head is allocated in one contiguous
block.
#* Management of the individual allocation
blocks is done with a data structure.
Usually a balanced or a 2/3 tree.

The pointers for that data structure are
maintained in the same area as the heap.

#* \Writing past the end of a buffer change
this structure.

Heap Overruns — cont.

\When an application frees memory free
heap sections are merged.

#* As a result, an attacker can cause
arbitrary values to be written to arbitrary
& locations!

#* The road from here to arbitrary code
execution is not long (demo next week).

.....

Known Dangerous Functions

* sprintf
Field length specifiers can prevent the problem.
Use the alternative snprintf.

Occasionally — scanf and fscanf
Again — limit each field’s length.

The str* functions — strcat, strcpy

Use strncat and strncpy instead.
Watch out for the usage!

* gefts
#* Your own loops.

"% Examples of Dangerous
'+ * Usage: scanf and fscanf

o}
%&M int main(int argc, char *argv[])
ﬁéﬁ%g? (
o char buffer[250] ;
)

scanf (“%$s”, buffer);

printf(“%s\n”, buffer);

return 0;

qe scanf and fscanf

i+ ¢ vulnerabilities (cont.)

4. » *There is no difference, in principle,

between the previous example, and the

i one using gets.

. ¥ = The egg needs to avoid the space and
+ newline characters, but writing such

eggs Is an everyday practice for an
experienced cracker.

Changing the scanf line to read ‘scanf
(“"$250s”, buffer); would have
solved the problem.

sprintf vulnerabilities

Assuming that the following is a set-UID
program:

int main(int argc, char *argv[])
{
char buffer[250];

sprintf (buffer, “Usage: %s <name>\n”, argv[0]);

printf (buffer) ;

b ke

s

'+ # sprintf vulnerabilities

« * *|n the previous example, argv[0] is used
to quote the program’s name.

argv[0] is actually supplied as a parameter
to the kernel function “execve”. There is no

limit to it's length.
#* sprintf buffer-overrun vulnerabillities
usually stem from two sources:

Formatting user supplied arguments, or
environment variables (registry).

m incorrect calculation of total buffer length
B when combining buffers.

str* functions

int main(int argc, char *argv[])

{
char buffer[250];

strcpy (buffer, argv[l]);

printf(“%s\n”, buffer);

return 0;

str* functions (cont.)

No need to explain why this is
dangerous.

#* Most str* functions have a
% corresponding strn* functions (i.e. —
_ strnepy instead of strepy).

Notice, however, that the strn* functions
have very confusing interface!!

i
et
v

The “gets” Function

int main(int argc, char *argv[])

{

char buffer[250];

gets (buffer) ;

printf(“%s\n”, buffer);

return 0;

L J;:a

» * Always gets its data from an external
source (stdin), which is rarely secure.
= *Has no facility to check the buffer’s

* length.
#* |s so dangerous, many modern linkers
Issue a warning Iif it is referenced.
On *BSD systems — runtime warning.

Use “fgets (buffer, buff size,
stdin) ;" for identical results with
boundaries checking.

.
Your Own Loops

“What'’s wrong with this program?

int main(int argc, char *argv[])

char buffer[250];

int i,c;

for(i=0; (c=getchar())'!'=EOF && c'=‘'\n’ && i<250; ++i)

buffer[i]=c;

buffer[i]='\0’;

printf (“%s\n”, buffer);

return 0;

b ke

ﬁ‘?;:.: .ﬁ

+* Your Own Loops (cont.)

.+ = *|f the input length is 250 characters or more,
a single byte after the end of the buffer is
overwritten with NULL.

= * \With an upward growing stack, and a little
endian machine (such as Intel), this means
overwriting the LSB of the pointer right after
the buffer with zero.

#* \With the buffer size occupying most (but not
all) of the previous 256 block, there is a very
high probability that the new pointer points
back into the buffer.

Cast screwups

void func(char *dnslabe|)

{ . , -
char buffer[256]; First byte at *dnslabel 1s 0x80 = -128

char *indx = dnslabel;

int count; €= | Getsexpanded to OXFFFFF80

count = *indx; G
buffer[0] = "x00’;

‘ signed comparison passes

while (count != 0 && (count + strlen (buffer)) < sizeof (buffer) - 1)

{ <—

strncat (buffer, indx, count);

Indx +=count; | 31most arbitrary length string is appended
count = *indx;

Further Reading

The extra material is for anyone who is
interested in deeper understanding of
exploiting buffer overruns

#* Smashing the stack for fun and profit —
http://www.phrack.org/show.php?p=49&a=14

#* Exploiting heap overruns —
http://www.phrack.org/show.php?p=57&a=9

Next Meeting (in two weeks)

Explanation of format strings
exploitation methods.

#* L ive demonstration of “from scratch”
development of a simple exploit code.

b Stack overrun.

Format string.

Available Online

This presentation (as well as others soon
to follow) is available in an all-browser
digestible form at
http://www.shemesh.biz/lectures

I'

Questions Time

